「活動記録」カテゴリーアーカイブ

東京雑学大学での活動

日江井榮二郎会員が、11月10日にNPO法人東京雑学大学の公開講座を多摩交流センター会議室で行いました。「陽の光ー太陽の恵み」というタイトルです。東京雑学大学は、生涯学習の推進、まちづくりの推進、文化、芸術、スポーツの振興を図るために、東京西部地域の数か所の会場で、毎週、さまざまな分野で活動する講師を招いて講義を行っている団体です。

会場には25名の参加がありましたが、この公開講座はインターネットを使って中継されていたので、他の会場でも多くの受講者がいたものと思われます。

講演の内容は以下の通りです。
まず宇宙の誕生、その時空間の宏大さ、悠久な時の流れを、国立天文台製作の動画を使って説明し、このような時空間なかで、太陽が誕生し、成長しつつあるという現代天文学の考え方を話しました。

最近のアルマ電波望遠鏡(チリのアンデス山中にあります)による星の誕生の様子や、科学衛星による詳細な太陽活動の観察結果を見せ、これらの現象には、プラズマと磁気との密接な相互作用が見られ、その諸活動の解釈には未だ解決されていない点があることを話しました。
pct_page00-03(写真は国立天文台アルマ望遠鏡のページより)

地上のありとあらゆる生き物は、太陽光のエネルギーを享けて命を保っています。太陽光のエネルギーは太陽定数として理科年表に表示されています。太陽定数というのは、地球大気表面の単位面積(1平方メートル)あたりに1秒間、垂直に入射する太陽の仕事率のことです。この値は、1平方メートル当たり1.35kW、あるいは、1平方センチメートル当たり毎分1.96カロリーです。

人工衛星による測定によると、太陽定数は太陽の11年活動周期に伴ってわずかに変動し、活発な時には静かな時期に比べて約0.1%大きいのですが、その変化量はわずかなものなので、定数として扱われています。
solar-cycle-data(図はWikipediaのImage from Global Artより)

太陽定数は、地球大気の吸収が無い地球大気圏外での値であり、大気や雲などによって反射・吸収され、また入射角があるので、地上に到達したときの値は、その約半分となります。いま、1平方センチメートル当たり毎分1カロリーが地上に到達しているとすると、1坪の面積が2時間太陽光を受けると、そのエネルギーは4千キロカロリーとなります。もし人間が光合成可能な生き物であれば、代謝に必要なエネルギーは、太陽光から十分、得られることになります。
3(葉緑体を体内に持つウミウシの一種。体内に取り込んだ藻の葉緑体で生きていける。写真はここからで、元の写真はEOL Learning and Education Groupより)

経済産業省資源エネルギー庁が発表している平成27年度年次報告書によると、世界のエネルギー消費量(一次エネルギー)は2014年には石油換算で129億トンに達したとあります。これは5.4x10^20ジュールに相当します。一方、地球に注がれる太陽光は1年間で5.4x10^24ジュールに達し、これは全人類が消費しているエネルギー量の1万倍も多いことになります。

太陽光のエネルギーは、未だ十分活用されていないのが現状です。地球温暖化ガス削減に向けて、人間の「チエ」が求められているとおもいます。

八王子市立楢原中学校での活動

有山正孝、江尻有郷、大井みさほ、奥田治之、野津憲治、細矢治夫、町田武生、和田勝会員が吉安信雄氏とともに、11月12日の午前に、八王子市立楢原中学校で1年生約170名を対象に、7つのテーマに分かれて、理科の実験授業を行いました。この日はPTAへの公開授業でもあり、校長、副校長理科担当教員に交じって、父兄の参観もありました。

それぞれのテーマは以下の通りです。
有山・吉安「さおはかり」では、さおばかりを作って、てこの原理を学ぼうというもので、有山会員が用意した材料を使って、生徒はさおばかりを作りました。
20161112-1 20161112-220161112-3
江尻・大井「豆電球とLED」では、豆電球とLEDの電流値を測定し、違いを考えるというもので、電流計を使って測定し、それぞれの特性を考えます。
20161112-420161112-5
奥田「日時計」では、紙で日時計を制作し、戸外でこの日時計を使って実際に時刻がわかるか試してみようというものです。
20161112-6 20161112-7 20161112-8
野津「地球の歴史」では、地球の歴史年表を作ろうというもので、地球が誕生してから今日までの46億年の歴史と、時々に起こった出来事を書き出していきます。
20161112-9 20161112-10
細矢「結晶の形」では、折り紙で結晶の形を学ぶのですが、数字が好きな細矢会員のことですから1936の平方根は?(答えは44×44ですが)から始まって、4、6、8、12、20正多面体とその組み合わせによる多面体(例えば立方八面体)へと発展し、結晶構造に迫るというものです。20161112-11 20161112-12 20161112-13

町田「体の中のつくりを見る」では、プレパラートを顕微鏡で観察して、細胞・組織・器官の成り立ちを理解し、そのはたらきを学ぼうというものです。
20161112-14 20161112-15
和田「ゾウリムシを調べる」では、元気に泳ぐゾウリムシを顕微鏡で観察し、どんな風に、何を使って泳ぐのかを理解し、単細胞生物のゾウリムシでも動くし、食べるのだということを学びます。20161112-16 20161112-17 20161112-18
間に休み時間を置きましたが2コマ続きの授業で、最後にアンケートを書いてもらい、後片付けをして実験授業を終えました。

控室の戻って、PTAの方々からお茶とお菓子の接待を受けて、ほっと一息という場面です。
20161112-19
写真はすべて、八王子市中学校PTA連合会副会長久保 淳氏の撮影したものをお借りしました。

板橋区立板橋第二中学校での活動

町田武生会員が、11月9日午後に、板橋第二中学校で開催された板橋区立中学校教育研究会主催の第3回理科教育研究授業と協議会に参加し、理科の実験授業を参観し、その後の協議会で指導・助言を行いました。参加した教員は岡村克也理科部会長をはじめとした65名で、今回は特に多くの理科教員が参加しているとのことでした。

この日の授業は、2年の生徒36名に対する「動物の生活と生物の変遷」の中の「動物の体のつくりと働きー刺激と反応」で、トリの手羽先を使って理解させるというもので、骨の動きと筋肉の関係を、手羽先を解剖しながら確認していきます。次の動画にあるようなものです(静岡県総合教育センターのページより)。
20161109-1

上の図をクリックすると、解剖の手順のスライドをみることができます。また、同じ教育センター作成のPDFファイルはここにあります。

実験授業は、よく練られた指導案に基づいて行われ、生徒に対しても適切に指導がなされていました。ただ、受ける側の生徒に集中力を欠ける態度が見られたり、観察記録の内容が不十分だったりする点が見受けられ、改善の必要があることを指摘しました。

また、解剖に刃物を用いる際の危険防止のための注意と、清潔に行うために配慮すべき点を、事前に述べるべきであると指摘しました。

その後、最近の生徒の理科研究には論理性の破綻や、根拠のない推論が多くみられることを例に挙げ、筋道を立てた論理的な理科の授業のための改善の方法などを講演しました。ふだんの授業のなかで、理にかなった「ものの考え方」をして行動することの重要性を認識してもらえたのではないかと思います。

狛江市和泉小学校での活動

山崎謙介会員が、10月27日に狛江市立和泉小学校の6年生3クラスおよそ100名の児童に対して、「地震の起こり方ー地震発生のモデルと地震の規模を測る物差しー」というテーマで授業を行いました(以下の記述は当日のお話に、補足的な解説を加えています)。
20161027-110月21日に鳥取地震が起こっています。4月には熊本地震があり、5年前には東北地方太平洋沖地震がありました。鳥取地震は解析が間に合わなかったけれど、熊本地震と東北地方太平洋沖地震を例に、地震について考えてみましょう。

熊本地震の新聞記事です。この時は大きな地震が1日の間をおいて2回、発生しました。本震だとか余震だとか前震だとかの言葉が使われ、最初は混乱しました。ともあれ、地震が発生した時には必ず、震度、マグニチュード、震源の位置と深さが発表されます。
20161027-2

それでは新聞記事にある、震度って何でしょう、マグニチュードって何でしょう。6年生になると新聞を見ることがあると思いますが、記事を読んで「?」と思ったら調べてみましょうね。今日は震度とかマグニチュードとは何か、から始まって、「そもそも地震ってどんなことで、どうして起こるの?」とか、「地下では何が起こっているの?」ということを考えてみましょう。
20161027-3

新聞にはすぐに気象庁から各地の震度が発表されます。昔は人が感じた揺れの大きさや周囲の状況から震度を決めていましたが、現在では(平成8年4月以降)各地に置かれた計測震度計によって自動的に観測しています(実際はそこから計測震度を算出して表示できる地震計が使われています)。熊本地震の時の九州各地の震度はこんな風でした。
20161027-4みんなに配った気象庁発行の「震度とゆれの状況」のポスターを見てください。現在では震度5と6に弱と強があるので、震度は0から7まで10階級に分けられています。このポスターを家のどこかに貼っておいて、地震が来たら震度を推定してみるといいですね。

科学ではいろいろなことを計測(観察して数値化)することが重要な第一歩になります。地震の場合は、計測する項目の一つが震度なのです。

それではどうやって震度を計測するのでしょうか。震度は地面の動きです。これには変位(どの程度動いたか)、速度(どのぐらいの速さでか)、それと加速度(速度の変化はどのくらいか)がありますが、人が敏感に感じるのは加速度です。たとえば、電車に乗った場合、駅から発車するときと駅に停車するときは、体がスピードの変化を感じることができますが、駅の間で一定の速度になるとあまり動いているとは感じられなります。つまり人は加速度を敏感に感じているのです。

この加速度を測るのが計測震度計で、原理は振子運動にあります。これは振り子ですね。こうやって錘を動かしてやると左右に振れます。一方、錘を一番下の位置で止めて、持つ手を素早く動かすと錘は振れません。錘は停止した状態で周囲が動くことになります。したがって、この周囲の動きを記録してやればよいのです。
20161027-5次の図は、この地震計の原理を図にしたものです。
fig9_1図はここから引用。原理についてもう少し詳しく書かれている。

加速度の単位はガルで、速度が1秒間で1cm速くなるのを1ガルとしています。このガルはガリレオ・ガリレイから来ています。現在の計測震度計では記録は紙に描くのでなく、コイルを使って電流に変えて記録しています。また上の図のような一方向ではなく、東西方向、南北方向それと上下方向の三成分を記録しています。
20161027-6上の図は、熊本地震の本震(4月16日)の時の、上から南北、東西、上下方向の加速度の記録です(地中と地表が3本ずつ)。

こうして求めた三方向の波形から計算によって計測震度を求め、震度階級に置き換えています(詳しくはここをご覧ください)。

計測震度は、その場所での観測値なので、震源からの距離(あるいはその場所の地盤などの状況)によって異なってきます。次の2枚の図は、東北地方太平洋沖地震の時の東京(上、震度5)と宮城県(下、震度7)での三方向の加速度の記録です(縦軸のスケールは異なり、下の方が13倍ほどは大きい)。
20161027-720161027-8上の図でわかるように、震源に近い宮城では2つのピークがあるのに対して、東京では1つに融合して長い時間経過をたどっています。これは揺れが伝わってくるために起こることです。東京では震度5の揺れが長く続き、怖かったですねー。みんなはその時幼稚園生だったかな、怖かったでしょう、と当時の記憶と地震の記録を結びつけるようにします。

それでは地震はどうして起こるのでしょうか。昔は地下でナマズが暴れるので起こるなどと考えられていましたが、現在では地中で起こった断層運動によって生まれたエネルギーが、周囲に放出されるためだと考えられています。
20161027-9熊本地震も東北地方太平洋沖地震も最大震度は7ですが、震度の分布をみると後者の方がずっと広がっていて、規模の大きさをうかがわせます。ここで地震の規模を測る物差しとして、マグニチュードが登場します。地震の本態は断層運動ですから、断層面の大きさ(面積)と断層面が滑った大きさがわかれば、地震の震源での規模を測る物差しになります。

しかしながら、断層面の面積などを実測することはできないので、観測された地震波などをもとに計算して求めます。そのためマグニチュードには多くの種類があります。日本で主に使われているのは、気象庁マグニチュードとモーメントマグニチュードです(両者の違いについてはここに詳しく解説されています。ただし一番最後の引用されているWebPageはリンクが切れています)。

詳しいことは省略して大ざっぱに言うと、マグニチュードは対数なので(10∧1.5M)、マグニチュードが1大きくなると、エネルギーはおよそ31.6倍(10∧1.5)大きくなり、2では1000倍(10∧3)大きくなります。ちなみに熊本地震(本震)のマグニチュードは7.3、東北地方太平洋沖地震は9.0でした。これで地震の規模を数値化できることになりました。

気象庁が発表する地震情報には、震源の位置と深さがあります。これはどうやって計測しているのでしょうか。地震による弾性体である地面の揺れには2種類あります。一つは縦波(粗密波)で揺れの進行方向と同じ方向に振動するもの、もう一つは横波で進行方向と直角に振動するもので、前者をP波、後者をS波と呼びます(図はここより)。
jikazanimg2_2P波とS波では速度が違い、P波の方が速く進行します。そのためP波とS波の時間差を測ると距離が求められ、複数の観測地点の結果から震源の位置と深さを求めることができます。

こうして断層運動を起こした面積の大きさと「ずれ」の大きさが、地震の規模を決めていることが分かります。それではどうして断層運動が起こるのでしょうか。そこには地球の構造が大きくかかわっています。
20161027-10震源が比較的浅い地震の起こった場所を、世界地図の上に描いてみると、特徴的なパターンが見えてきます。
20161027-11これまでの研究で、地球の表面は何枚かのプレート(硬い岩盤)がジグソーパズルのようにはめ込まれてできていると考えられています。そうしてこのプレートは、ゆっくりと動いていて海溝で隣り合うプレートの下に沈み込んでいるのです。このような考えをプレートテクトニクスと呼んでいます。上の図の地震の起こった場所は海溝に沿っていることが分かります。

日本付近を拡大してみるとこのようになっていて、複数(4枚)のプレートが入り組んでいる位置に日本が存在していることが分かります。地震の多いのは仕方がないのですね。
20161027-12右上の赤が濃いところが千島海溝の位置、その下の縦に伸びた部分が日本海溝の位置です。右側の白い部分が太平洋プレートで、このプレートが日本海溝で沈み込んでいく部分の断面図が次の写真です。
20161027-13こうした動きによって断層運動が発生して、地震が起こるのです。地震の起こるメカニズムは気象庁のページに詳しく書かれています。

プレートは硬い岩盤の板だと書きましたが、この岩盤にはたくさんの割れ目があって、普段はしっかりとかみ合っています。この割れ目がプレートの動きによって押されてずれるのが断層運動です。このような「固着ーすべりー復元」は繰り返し起こります。これが活断層です。日本付近には、このような活断層が多数存在します。まだ見つかっていないものもあるようです。
20161027-14
それでは地震予知はできるのでしょうか。繰り返し起こるのだから、周期がわかれば予知できそうですが、高い確率で予知するのは、なかなか難しいというのが実情です。

今日の話はちょっと難しかったかな。
20161027-15震度やマグニチュードの話をしましたが、科学にとって大事なことは観察・測定をすることです。地震の研究では、これらをいかに精度よく記録するか、科学者は知恵を絞ってきました。今でも改良が続けられています。地震を感じたら、震度やマグニチュードなど、今日のお話を思い出してください。

狛江市第四中学校での活動(2)

古川義純会員が、10月25日午前中に狛江市第四中学校の2年生3クラス90名に対して、「雪と氷の科学-氷の結晶ができる様子を観察してみようー」というタイトルで、実験授業を行いました。

古川会員の準備は周到で、札幌から冷凍庫と、その中に石鹸膜を作る針金製の輪、氷の分子模型、その他の小物などを入れて送ってあり、理科室にはその冷凍庫の電源が入って鎮座していました。
20161025-120161025-220161025-3

準備が整ったところで時間になり、生徒が理科室に入ってきます。授業の始まりです。

自己紹介ののちに、まずは雪はどんな形をしているかしらという質問。これは大体、みんな六角形と答えます。次に下の写真にあるように細い筆の先につけた雪の拡大写真を見せて大きさを質問。どのくらいの大きさかな?20161025-420161025-5
生徒たちから、いろいろな大きさの声が飛びますが、みんなの答は0.1mmとか、小さめが多いようです。この写真の雪の大きさは3mmです。細い筆で雪の結晶を集めて黒い布(毛足のあるビロードがいいそうです)の上に置いた写真が次のもの。大きさや形はいろいろあるんですね。同じ形の物は決してないと言われているんだそうです(最近、この定説が覆されたとか)。
20161025-6

雪の結晶は顕微鏡で拡大して観察します。
20161025-7典型的な樹枝状結晶と角板状結晶。
20161025-820161025-9この他にも扇型結晶、広幅結晶、星状結晶、樹枝付角板など、さまざまな名前が付けられています。また典型的な六角形の平面構造ではなく、角柱、針状、御幣などもあります。形の違いは結晶ができるときの水蒸気の濃度や温度などの条件によって決まります。中谷宇吉郎博士が「雪は天から送られた手紙」といった意味が分かりますね。

それでは雪の結晶はどのようにできるのでしょうか。もう物質の状態変化を学習していますね。水の三態は?、質問して答えてもらいます。そうですね、氷(固体)、水(液体)、水蒸気(気体)です。
20161025-10雪の結晶は、水蒸気が氷になることによって生じます(凝華、これまでは昇華と言われてきた)。結晶が成長していくわけです。水分子は学習しましたよね、どんな構造ですか?(生徒に答えてもらって)そうですね。H2O、すなわち酸素原子が一つと水素原子が2つ、こんな角度で結合したものが水分子です。
20161025-1120161025-12これが氷の結晶の分子模型です。こっちの方向から見ると、六角形をしています。そのために雪の結晶は五角形でも八角形でもなく、六角形になるのです。

気体の水蒸気が直接、固体の氷になる場合と、水が氷になる場合があります。水から氷になる場合でも、条件を整えれば結晶が作られていく過程を見ることができます。
20161025-14

水蒸気から氷の結晶を作るのは時間がかかります。そこで工夫して、石鹸水に砂糖を混ぜ、針金製の輪に石鹸水の膜を作り、これを冷凍庫の中に入れてマイナス10度から20度に冷やすと、氷の結晶が成長していくのが見られます。砂糖は結晶の成長を抑えるために使っています。
20161025-15

冷凍庫を用意してあるので、みんなでやってみましょう。以後、班ごとに各自、石鹸膜を作って冷凍庫の庫内に入れて、氷の結晶の成長を観察しました。きれいに六角形に成長すると、みんな感嘆の声を上げていました。
20161025-1620161025-1720161025-1820161025-1920161025-20どんな結晶ができるか、温度(冷凍庫内の位置)によって結晶のできる数やスピードが変わるか、ということにも注目してねと事前に言っておいたのだけれど、そこまでの観察できた人はあまりいませんでした。時間がなかったので仕方がありません。

この後、国際宇宙ステーション(ISS)の希望(日本の実験室)で宇宙で初めて氷の結晶を作った話をしました。やはり六角形なんです。
20161025-2120161025-22

上空の雲の中で雨や雪ができることを、これから気象の単元のなかで学習するので、今日のことを思い出してくださいね。
20161025-23
それでは、これで終わります。「ありがとうございましたー」。楽しい授業でした。

古川会員は北海道大学低温科学研究所の名誉教授で、相転移ダイナミクス分野に所属し、雪の結晶の成長や氷の結晶表面のことを研究されてきました。雪や氷の結晶成長の基礎についての詳しい説明は、同研究所の下記のページをご覧ください。

http://www.lowtem.hokudai.ac.jp/ptdice/basis.html

八王子市立由井中学校での活動

有山正孝、廣田穣、町田武生、和田勝会員が、22日午前9時半から2時半まで八王子市立由井中学校で、第8回八王子市中学校科学コンクールの最終審査会に出席して、作品の評価、審査に協力しました。

八王子市立中学校PTA連合会(会長後藤真弓氏)は理科教育振興に熱心で、毎年、夏休みの理科研究の報告を募集し、SSISSもこの4年ほどPTA連合会が主催する最終審査会のお手伝いをしています。今年は各中学校での一次審査で選ばれて応募された作品は156件で、これを二次審査で37件に絞り込まれていました。それぞれの作品は、4つのブロックごとにテーブルに並べられています。
20161022-1

審査員はSSISSの4名に加えて、八王子市立由井中学校校長、同ひよどり山中学校理科教諭、同教育委員会生涯スポーツ部こども科学館専門幹兼主査、後援をしているオリンパス株式会社技術開発統括本部RD運営統括部6グループリーダー、それとPTA連合会会長(いずれも氏名省略)の9名でした。始まる前に、各テーブルの作品をざっと下見です。

20161022-2

お昼をはさんで4時間、審査員はすべての作品に目を通し、必要に応じてコメント用紙に記入します。また各審査員は5枚の付箋紙を持ち、良いと思う作品に投票していきます。みんな熱心に読んでいますね。
20161022-320161022-420161022-5いずれも力作ですが、選ばなければいけません。研究の目的が明確で、着眼点や発想がユニークであること、研究の進め方が論理的で仮説と検証のプロセスを踏んでいるもの、インターネットに載っているものを単になぞったものではなく、オリジナリティーがあるもの、を評価するようにということですが、難しい作業です。

全員が目を通した時点で、付箋紙の獲得の多かった作品が集められ、全員で一つ一つを検討し、最優秀賞、優秀賞、奨励賞を選んでいきます。
20161022-6最優秀賞1点と優秀賞1点はわりとすんなり決まり、残りの中から奨励賞を3件選んで、審査会は終わりました。

受賞者に対する表彰式と各受賞者によるプレゼンテーションは11月26日(土)に八王子学園都市センターホールで開催され、最終選考まで進んだ37点の研究のポスター展示が同時に行われます。

狛江市立第四中学校での活動

岡崎廉治会員が10月19日午前に、狛江市立第四中学校で「元素の話 ー宇宙から生命までー」と題して、3年の3クラス94名を対象に授業を行いました。第四中学校校長先生、副校長先生、理科担当教員、東京都教育庁理科支援担当員なども聴講しました。

3年生のこの時期なので、すでに教科書のいくつかの単元で、宇宙や進化、物質、元素などについては学んでいます。そこでこの授業では、これまで学んだ事柄を、元素をキーワードとして結び付け、総合的に理解させることを目指した授業を行いました。

20161019-1最初に生徒たちの興味を引き付けるためにクイズを3つ。1番目は「ヒトの体にある原子の数は何個ぐらい?」。3択で、1)10億、2)10億の10億倍、3)10億の10億倍の10億倍。
20161019-2それぞれの答えに手を挙げてもらいました。どれが正解だか分かりますか。答えは3)です。めちゃくちゃ、多いですね。

それでは第2問「ヒトの体にある元素の種類はどのくらい?」。1)10種類、2)30種類、3)50種類。
20161019-3答えは2)です。およそ35種類です。少ないですね。ただし分析技術の向上によって増えるかもしれません。ここで原子と元素という言葉の使い方を説明します。原子は粒として認識しているとき、元素は種類としてお互いに区別するとき、です。

第3問は「その元素(原子)はどこでできたか?」。これはほとんどの生徒が地球、太陽、宇宙のうち、宇宙と答えていました。

ここから、元素の誕生から現在までの壮大な時間のお話が始まります。
20161019-420161019-5現在、宇宙は膨張を続けていると考えられています。だとすると1億年前は今よりももっと小さかった、さらにさかのぼるともっと小さかった、、と小さくなって、最初は原子よりも小さなものだったはずです。それがあるとき爆発的に膨張します。ビッグバンですね。今から138億年前のことです。

この過程で、水素原子、ヘリウム原子と少量のリチウム原子が生まれました。
20161019-6これらの原子が2億年かけて集まって、その内部で核融合反応が起こり、周期表26番目の鉄(Fe)までの元素が生まれました。これが第一世代の恒星です。星には寿命があります。こうしてできた最初の恒星は、やがて膨張して爆発します。この爆発のエネルギーによって鉄よりも重い元素が作られました。
20161019-7このような誕生と死との繰り返しによって、宇宙には多くの星(銀河系)が生まれました。その一つ、天の川銀河に太陽系が生まれたのが46億年前、地球も一緒に生まれました。

さてここからは地球に焦点を絞ってお話していきましょう。地球は、大気圏、地殻、水圏、生物圏に分けられますが、地殻を構成する元素は、酸素、ケイ素、アルミニウム、鉄、カルシウム、、で酸素が48%を占めています。水圏(海)では、酸素が86%、水素が11%で、あとは塩素、ナトリウムです。

こうして46億年前に誕生した地球の上に、38億年前に生命が誕生しました。もちろんはじめは単細胞生物です。それが多細胞生物になったのが12億年前、我々の直接の先祖である哺乳類が進化した来たのが1.5から2億年前、大型の類人猿が誕生したのが2000万年前です。

さらにアフリカで現生のヒトHomo sapiensが出現したのが20万年前だと言われています。もちろん、この間にもう少し古いヒトのご先祖様、例えばHomo electusなどがいました。ヒトは10万年前にアフリカを出て世界中に分布を広げ、日本にたどり着いたのが3万年前でした。
20161019-8

ヒトの体は35種類の元素からなるといいましたが、それではどんな組成になっているのでしょうか。酸素が一番多くて65%、次が炭素で18%、水素が10%、窒素が3%、あとはカルシウム、リン、その他の元素です。ただし数の比率でいうと、水素が一番多くて63%、酸素25%、炭素9%、窒素1.5%です。水素原子が一番多いんですね。
20161019-9今あげたのは多量元素で、少量元素として硫黄、カリウム、ナトリウム、塩素、マグネシウムがあります。さら微量元素として、鉄、亜鉛、マンガン、銅などがあり、超微量元素としてヨウ素、コバルトなどがあります。これらの金属はビタミンに含まれて酵素の働きを助けたり、ホルモンに含まれていたりします。微量でもとても大切な元素なんですね。
20161019-10周期表に書き込んでみると、こんな分布をしています。多量元素と少量元素は周期表の3周目+4周目の最初の2つまでに限られています。
20161019-11

こうして宇宙の誕生から今の君たち、私の身体を見てくると、一番多い水素原子は、最初に誕生した元素である水素を受け継いでいることになります。原子は消滅することがないからです。地球に存在するすべてのもの(物と生き物)は、同じ元素(原子)を使いまわす仲間であり、みんなは星のかけらなのです。これが今日のとても大事なメッセージです。
20161019-12

残りの時間で「新しい元素は作れるか」というお話をします。今年の6月に新聞に113番目の元素に理化学研究所がニホニウムという名前の案を提出したという記事が載りました。みんなが持っている理科の副教材に載っている周期表は、113、115、117、118が空白になっているはずです。
20161019-14このうちの113番目がニホニウムという名前が与えられ、これが国際的に認められるでしょう。チームリーダーである森田浩介博士が理研で2004、2005、2012年に発見というか作り出しました。30Znと83Biをぶつけて、足して113になるようにして作り出したのです。100兆回やって、たった3個だけ成功したのです。

このほか今年は、115がモスコビウム、117がテネシン、118がオガネソンという名前が提案されていて、118番目まで埋まったことになります。自然に存在する元素は92番のウランまでで、93から後の元素はいずれも人工的につくられた元素で、104番以降の元素は寿命の短いものばかりです。ちなみにニホニウムの半減期は0.0003秒です。129番以降の新しい元素はどこまで作れるか?わかりませんが、比較的安定な126番が次につくられるかもしれません。

ちょうど時間になりました。これで終わります。ありがとうございました。
20161019-13熱心にメモを取っている生徒さんがいました。聞いてみると「面白かった」という感想でした。
20161019-1520161019-16
ーーーーーーーーーーーーーーーーーーーーーーーーーーーー
この授業に関係する図表が、文部科学省の下記のサイト「一家に一枚ポスター」に掲載されています。この中の「宇宙図2013」と「元素周期表」です。PDFファイルをダウンロードできます。
一家に一枚ポスター
ーーーーーーーーーーーーーーーーーーーーーーーーーーーー

3コマの講義が終了したのち、校長室で校長先生と歓談しました。その席上で、今年の夏休みに理科自由研究を募り、各学年の生徒から多数の応募があったこと、優秀賞を選定し、そのうち10名の生徒にプレゼンをしてもらったことを、資料をもとにお聞きしました。理科の興味を高め深めるうえで効果があったということでした。SSISSが支援している八王子PTA連合主催のコンクールについてお話をしました。

城山中学校での活動

有山正孝、大井みさほ、奥田治之、日江井榮二郎、廣田穣、町田武生、和田勝会員が、吉安信雄、萩野正興氏の助力を得て、10月8日午後に、八王子市立城山中学校で同校の校長先生が企画したイベントで理科の実験授業を行いました。

実験授業といっても教室実験授業といっても、教室で行うものではなく、体育館の中に机を並べたアイランドを7つ作り、1,2年の生徒およそ90名に一般の方(小学生を含む)およそ10名を加えた100名が分散してアイランドの周りに座り、そこで各会員がそれぞれのテーマで用意した実験に生徒が参加するというものです。

今回は今年1月に行ったのとは異なり、テーマを1つにして時間を長くし、たっぷりと実験できるようにしました。テーマは以下の通りです。
①奥田:日時計を作ろう
②日江井・荻野:太陽活動・太陽黒点
③有山・吉安:モーターの原理を学びクリップモーターを作ろう
④大井:空間における光の進み方を学ぼう
⑤廣田:色の変わる化学反応を調べよう
⑥町田:マウスの体の中を調べよう
⑦和田:ゾウリムシを顕微鏡で観察しよう

20161008-120161008-2

開講に先立ち、各会員はブースの用意に余念がありません。
20161008-320161008-420161008-6マウスがかわいいと、生徒が手に載せています。
20161008-5

開講式で校長先生のあいさつと講師(我々のことです)の紹介があって始まります。
20161008-7そうそう、フレアー博士は人気者で、サインを求められていました。20161008-8

各ブースでの各会員の活動の様子は、広報担当者がブースに張り付いていたので写真を撮れませんでした。あしからず。

最後に生徒代表の方からお礼の言葉が述べられてこの活動は終わりました。
20161008-9

城山中学校のPTAの方々には、いろいろな面でサポートをしていただきました。

狛江市中学校教員研修会での活動

大井みさほ会員が、10月5日、2年生の生徒に実験授業を行った後に、狛江市立中学校の教員に対して「光とレーザーの利用」というタイトルで研修を行いました。20161005-12

最初に直前に行った理科授業特別プログラムについて、大井会員から、最初の説明に時間をとりすぎてしまったことを反省する発言がありましたが、理科部会長からは、何のために実験をするのかの意味が、生徒にわかってよかったのではないかというコメントでした。電子の励起などの説明は中学生には少し難しかっただろうと思います。

その後、本題の講演「光とレーザーの利用」として、自分の研究を含めてレーザー研究の歴史を話し、レーザーとは何かについての話につなげ、原理や応用について詳しく話しました。こちらでは反転分布の説明に「ものぐさ太郎」を使っていました。
20161005-1320161005-1420161005-15レーザーの原理などについては、直前の活動記録(狛江市第一中学校での活動)をご覧ください。

レーザー光は身近なところではバーコードリーダーやCD/DVDのピックアップ、さらに医療用、工業用、また計測、通信などに幅広く使われていることを話しました。

そのあとで、生徒がやったのと同じように水槽でレーザー光を見る実験などを実際に体験してもらいました。

狛江市立第一中学校での活動

大井みさほ会員が10月5日午後に、狛江市立第一中学校で「人と光のかかわり 特にレーザーについて」と題した実験授業を、2年の生徒30名を対象に実施しました。この授業は、狛江市中学校教育研究会の研究授業として、理科部会の教員へ公開され、理科部会長の第二中学校校長をはじめ7名の教員が聴講しました。

第一中学校の丸田先生の発声で授業が始まりました。まずは自己紹介。20161005-1続いて各種の「光」について、太陽や月の光、用意したローソク、LEDライトスタンドなどを例に説明します。でもって、そもそも光とは何か、波なのか粒子なのかの論争が長い間あったことも説明、現在では、粒子と波の両方の性質を併せ持つ光子のあつまりと考えられています。
20161005-2光を発するものは、太陽でもランプでも電気スタンドでも、粒と波の性質を合わせもつ光子を出しています。光子は、物質を構成する原子がもつ電子がエネルギー準位を変えたときに、その差に応じた波長をもって放出されます。この時、波長(f)と周波数(λ)の関係は以下のようになります。

λ・f=光速(一定)

私たちはこの周波数の違いによって色を感じています。普段、目にする光はいろいろな周波数の集まりです。
20161005-3うーん、難しくなってきました。がんばって話を進めます。次はレーザー光についてです。

レーザーはLight Amplification by Stimulated Emission of Radiationの頭文字を組み合わせたもので、レーザー光を発生する装置を指します。レーザー光は人工的に作り出された光の一種なのです。レーザー光を発生させるには、1)反転分布、2)誘導放出、3)光共振器、の3つの現象が必要になります。
20161005-41)ふつうは原子の周りにある電子は、一番低いエネルギー準位にいます。それを刺激して(励起するといいます)、電子のエネルギー準位が上がった状態に保つことを反転分布といいます。

2)反転分布状態の電子に光を当てると、エネルギー準位が下がって一段下の順位に移り、その時、エネルギー差に応じた周波数の光が出ます。この光が引き金となって、別の電子を刺激して光を発することがあります。これがまた次の電子を、、というように連鎖的に同じ波長の光を次々に発する状態が生まれます。これを誘導放出といいます。この時の光は、波長がきれいにそろった(コヒーレントなといいます)光になります。

3)1)と2)ではまだ十分な強さではありません。ここでちょっとアナロジーとしてオルゴールを使って説明しましょう。
20161005-5この手回しオルゴールを手にもってハンドルを回すと、きれいな音が出ますが、とても小さくてみんなには聞こえないでしょう。
20161005-6でもこれを教卓の上において、同じようのハンドルを回すと、ほら、みんなに聞こえるような音が出ます。
20161005-7これは共鳴ですよね。これと同じようなことをします。光共振器の利用です。1)と2)の過程を、2枚の鏡を向かい合わせた装置の中で行います。一枚の鏡は100%の反射率、反対側の鏡は95%の反射率を持たせると、発生した波長のそろった光は2つの反射鏡の間を往復しながら誘導放出を起こして強い光となり(レーザー共振)、その一部が一方の鏡を抜けて外に出ていきます。これがレーザー光になります。

1)から3)の過程を示す動画があったので載せておきます。

レーザー光が波長のそろった指向性の優れた、強い光であることを利用して、身近なところではバーコードスキャナー、レーザープリンター、CD/DVDのピックアップ、さらに医療用のレーザーメス、レーザー加工機(切断や彫刻)など、レーザー光はさまざまな分野で利用されています。出力の小さなものはレーザーポインター(指示棒)があります。今日はそのレーザーポインターを使って、光による通信について実験をして確認してみましょう。

ということで、指向性の優れたレーザービームを使って、光ファイバーの中をレーザー光が伝わっていくことを確かめてみます。牛乳を少し入れた水槽にレーザーポインターで光を当てると、きれいに光路が見えます。なるほど、なるほど。
20161005-8光ファイバーの中を、レーザービームは全反射によって外に漏れないで伝わっていきます。これを利用すれば例えばモールス信号を送ることができます。これもみんなで試してみましょう。
20161005-9最後に、みんなに光ファイバーを「お土産」に渡して、今日の授業は終わりです。
20161005-10ありがとうございました。お疲れさまでした。
20161005-11